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The vorticity jump across an unsteady curved shock propagating into a two-dimen-
sional non-uniform flow is considered in detail. The exact general expression for the
vorticity jump across a shock is derived from the gasdynamics equations. This general
expression is then simplified by writing it entirely in terms of the Mach number of
the shock MS and the local Mach number of the flow ahead of the shock MU .

The vorticity jump is very large at places where the curvature of the shock is
very large, even in the case of weak shocks. Vortex sheets form behind shock-shocks
(associated with kinks in the shock front).

The ratio of vorticity production by shock curvature to vorticity production by
baroclinic effects is O( 1

2
(γ − 1)M2

U), where γ is ratio of specific heats, which is very
small if the flow ahead of the shock is only weakly compressible. If, however, the
tangential gradient along the shock of M2

U is large then baroclinic production is
significant; this is the case in turbulent flows with large gradients of turbulent kinetic
energy 1

2
M2

U . The vorticity jump across a weak shock decreases in proportion to shock
intensity if the flow ahead of the shock is rotational, rather than in proportion to
the cube of shock intensity as is often assumed, and thus is not negligible. It is also
shown that vorticity may be generated across a straight shock even if the flow ahead
of the shock is irrotational. The importance of the contribution to the vorticity jump
by non-uniformities in the flow ahead of the shock has not been recognized in the
past.

Examples are given of the vorticity jump across strong and weak shocks in a variety
of flows exhibiting some properties of turbulence.

1. Introduction
It is important to understand the way vorticity is generated across a shock front

because vorticity is central to a wide variety of processes and phenomena. Turbulence
is fundamentally vortical, and any changes in turbulence vorticity across a shock
affects greatly the subsequent evolution of the turbulence behind the shock. For
example, Lee, Lele & Moin (1993) found that the variance of the vorticity behind
the shock is the main contributor to turbulent kinetic energy (TKE) dissipation. A
curved shock generates vorticity unevenly and hence increases the variance of vorticity
behind the shock. Eddy shocklets form spontaneously in flows with a turbulence Mach
number Mt = (u′ju

′
j/a

2)1/2 > 0.3, where u′j are the turbulent velocity components, the
overbar means ensemble average, and a is the speed of sound (Kida & Orszag 1990);
thus the effects of vorticity generation across a shock are especially important in
compressible turbulent flows.
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Conversely, an initially laminar flow can be made turbulent if enough vorticity
is added as the flow passes through a curved shock. The vortex sheets behind a
shock with regions of high curvature become unstable and eventually produce three-
dimensional turbulent motion in a similar way to that by which the large eddies of a
mixing layer produce three-dimensional turbulence.

Vorticity is also a major factor in determining the combustion rate of a burning
fluid; high vorticity tends to mix the fluid more efficiently and enhance the combustion
rate. The fact that the generation of vorticity across a shock front and across a
general flow discontinuity is very similar (Berndt 1966) means that many of the
results presented here should also hold for flame fronts.

An expression for the vorticity jump across a shock wave was first obtained by
Truesdell (1952). He considered the vorticity jump in a tangential direction b = n× s
(where n and s are respectively the unit normal and tangent vectors to the shock
surface) across a two-dimensional steady shock in uniform flow, and found the
relation

δω = − µ2

1 + µ
USK, (1.1)

where the symbol δ indicates the jump of a quantity across the shock,

µ =
ρb

ρa
− 1 (1.2)

is the normalized jump in density ρ across the shock (the subscripts a and b indicate
quantities ahead of and behind the shock respectively), US is the velocity tangential
to the shock in the frame of reference of the shock, and K is the curvature of the
shock.

Truesdell’s derivation uses Crocco’s law relating the vorticity to the entropy
gradient

u× ω = T∇S (1.3)

(where u is the velocity vector, ω is the vorticity vector, T is the temperature and
S is the entropy) and hence his derivation involves the equation of state of the
gas. The application of Crocco’s law requires a number of assumptions: the flow
must be steady, isocompositional and isoenergetic. Truesdell found, however, that the
magnitude of the vorticity jump across a shock of a given strength and curvature
depends only on the magnitude of the tangential component of the velocity and the
curvature of the shock and is independent of the form of the equation of state.

Truesdell’s (1952) result was later re-derived independently and generalized to the
case of three-dimensional shocks by Lighthill (1957). Lighthill expressed Truesdell’s
vorticity jump relation in terms of the axes of principal curvature of the shock.
Lighthill considered strong shocks, but that restriction was not necessary.

Hayes (1957) noticed that Truesdell’s final relation does not depend on the ther-
modynamic state of the fluid, which suggests that the vorticity jump is a purely
dynamical process. Following this idea Hayes was able to derive the vorticity jump
using only conservation of momentum (the Euler equations) and conservation of
mass. Hayes first derived Truesdell’s result (extended to three-dimensional shocks)
and then generalized it from a steady shock in uniform flow to the general case of
an unsteady shock moving into a non-uniform flow. Hayes’s dynamical derivation
has the advantage that is does not require the restrictive assumptions of Crocco’s
law.
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The general expression obtained by Hayes for the vorticity jump in the tangential
direction b across an unsteady three-dimensional shock moving into a non-uniform
flow is

δω b = n×
[
−∂(ρCr)

∂S
δ(ρ−1) + (ρCr)

−1(DSU S + CrDSn)δ(ρ)

]
, (1.4)

where ∂/∂S is the tangential part of the directional derivative, Cr = C−A is the shock
speed relative to the normal component of the flow ahead of the shock A, and DS is
the tangential part of the total time derivative. Note that the normal component of
the vorticity is continuous across a shock. In evaluating equation (1.4) to obtain his
final expression for the vorticity jump

δω b = − µ2

1 + µ
n×

(
U S ·K +

∂Cr

∂S

)
s, (1.5)

Hayes assumed that the flow ahead of the shock is uniform (this expression contains
a typographical sign error in Hayes 1957).

Berndt (1966) found an even more general expression for the jump in vorticity
across a discontinuity surface which is not a contact surface. The vorticity jump is
derived using two reference frames normal to the shock, one on each side of the
discontinuity surface, chosen so that the tangential component of velocity vanishes in
each frame. Berndt derived his most general result (which allows arbitrary motion of
the fluid and the discontinuity) entirely kinematically and then included the dynamics
of the flow by enforcing successively the momentum equation of the flow and the
conditions of conservation of mass and momentum across the discontinuity. Berndt’s
most general dynamical expression includes the effect of an extraneous force field,
a normal impulsive force and a discontinuity in the tangential velocity. Hayes’s
expression (1.4) is a special case of Berndt’s general dynamical result. The general
kinematical expression for the vorticity jump obtained by Berndt is

δω b = n×
[
δ(DSu/un)− ∇(δvn)

]
+ δωn + 2 δΩS , (1.6)

where v is the flow velocity relative to a common frame and Ω is the angular velocity
of the local frame with respect to some common frame.

The purpose of the present paper is to derive a general expression for the vorticity
jump across a shock using the methods introduced in Kevlahan (1996) and then to
use this expression to investigate mechanisms for vorticity production in the shock–
turbulence interaction. The ‘raw’ equation for the vorticity jump will be equivalent
to Hayes’ result (1.4), but in evaluating this expression the flow ahead of the shock
will be allowed to be non-uniform which results in several additional terms compared
with equation (1.5). By writing the vorticity jump in a variety of special cases (e.g.
strong shock, weak shock, strong flow ahead of the shock) a number of interesting
facts may be discovered. The vorticity jump across a weakly curved strong shock
can be calculated analytically and examples are given for a variety of flows ahead
of the shock. The vorticity jumps in some of the unsteady weak shock interactions
considered in Kevlahan (1996) are also found.

A central theme of this paper is the role played by non-uniformities in the flow
ahead of the shock in generating vorticity across a shock; this mechanism is almost
always neglected in discussions of vorticity generation across a shock.
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2. Derivation of the vorticity jump across a shock
2.1. The general equation

In this section we derive the general expression for the vorticity jump across a two-
dimensional unsteady shock in non-uniform flow, and evaluate this expression to the
same level of generality.

The vorticity ωb just behind a shock is

ωb =
∂vb

∂x
− ∂ub

∂y
, (2.1)

where u and v are respectively the x- and y-components of velocity. We have taken
the vorticity in the direction −b = −(n× s) so that positive vorticity is in the direction
out of the plane of the flow (i.e. in the conventional z-direction). Unfortunately, the
Rankine–Hugoniot jump conditions giving ub and vb cannot be used to calculate
vorticity behind the shock ωb because the curl operator involves exterior derivatives
(derivatives in the direction normal to the shock front). The problem is similar to that
encountered in Kevlahan (1996) when calculating the evolution of shock strength
µ and its normal derivatives. We follow a similar procedure here to calculate the
vorticity behind the shock.

Equation (2.1) can be re-written in terms of normal and tangential derivatives
relative to the shock

ωb =
∂Ab

∂S
−
(
∂B

∂N

)
b

+ Ab
∂θ

∂N
+ B

∂θ

∂S
, (2.2)

where A and B are respectively the velocities normal and tangential to the shock,
∂/∂N is the normal derivative relative to the shock, and θ is the angle of the shock
normal to the x-axis. The subscript b has been left off the tangential velocity B since
B is continuous across the shock. Thus the vorticity jump across the shock is

δω =
∂( δA)

∂S
− δ

(
∂B

∂N

)
+ δA

∂θ

∂N
. (2.3)

The second and third terms on the right-hand side of (2.3) cannot be found from
the Rankine–Hugoniot jump conditions for the velocity. An expression for δ(∂B/∂N)
can be found using the two-dimensional gasdynamics equations

ρt + (u, v)

(
ρx
ρy

)
+ ρ(ux + vy) = 0, (2.4)

(
ut
vt

)
+

(
ux uy
vx vy

)(
u
v

)
+

1

ρ

(
Px
Py

)
= 0, (2.5)

Pt + (u, v)

(
Px
Py

)
+ γP (ux + vy) = 0, (2.6)

where P is the pressure and γ is the ratio of specific heats, written in terms of
tangential and normal derivatives relative to the shock. The third relation is then

dθ

dt
+ (A− C)

∂θ

∂N
−
(
A− C
A

)
∂B

∂N
− 1

ρA

∂P

∂S
− 1

A

(
dB

dt
+ B

∂B

∂S
− AB ∂θ

∂S

)
= 0. (2.7)

Calculating the jump in equation (2.7) across the shock and rearranging the terms,
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we find

ρbAbδ

(
∂B

∂N

)
= (δρC − ρδA)

∂C

∂S
+δρC

(
B
∂θ

∂S
− ∂B

∂N

)
− δρ

(
∂B

∂t
+B

∂B

∂S

)
+ρ(A− C)δA

∂θ

∂N
+ρ(A− C)

∂(δA)

∂S
+δA

(
ρ
∂A

∂S
+(A− C)

∂ρ

∂S

)
, (2.8)

where C is the propagation speed of the shock, the subscript a indicating quantities
ahead of the shock has been dropped (henceforth quantities with no subscript are
those ahead of the shock) and ∂(δP )/∂S has been eliminated using the Rankine–
Hugoniot relation

δP = −ρ(A− C) δA, (2.9)

which can be differentiated with respect to S to give

− ∂(δP )

∂S
= ρ(A− C)

∂(δA)

∂S
+

(
ρ
∂A

∂S
− ρ∂C

∂S
+ (A− C)

∂ρ

∂S

)
δA. (2.10)

Substituting the expression (2.8) for δ(∂B/∂N) into the equation for the vorticity jump
(2.3) one obtains the general expression for the vorticity jump across an unsteady
shock moving into a non-uniform flow

δω =
1

ρ(A− C)

[
δρ

(
DB

Dt
− C ∂C

∂S
− CB ∂θ

∂S

)
− δA ∂

∂S
(ρ(A− C))

]
, (2.11)

where
DB

Dt
=
∂B

∂t
+ C

∂B

∂N
+ B

∂B

∂S
. (2.12)

Equation (2.11) can be shown to be equivalent to Hayes’ (1957) result (1.4).
The terms in (2.11) can be evaluated using the Rankine–Hugoniot relation for δA

δA =
µ

1 + µ
(C − A), (2.13)

and the definitions of A and B

A = Nxu+Nyv, (2.14)

B = Nyu−Nxv, (2.15)

where (Nx,Ny) is the unit vector normal to the shock. After some manipulation one
finds

δω =
µ2

1 + µ

∂Cr

∂S
− µ

Cr

[(
Du

Dt

)
S

+
C2
r

1 + µ

1

ρ

∂ρ

∂S

]
+ µω. (2.16)

If the flow ahead of the shock is isentropic then P = a2
0ρ (where a0 is the stagnation

sound speed of the flow) and the term involving density in (2.16) may be replaced
using the substitution

∂ρ

∂S
= −ρ0

a2
0

(
Du

Dt

)
S

, (2.17)

and the vorticity jump becomes

δω =
µ2

1 + µ

∂Cr

∂S
+

1
2
(γ − 1)µ2

1− 1
2
(γ − 1)µ

1

Cr

(
Du

Dt

)
S

+ µω. (2.18)

The first term on the right-hand side of (2.18) represents the vorticity jump due to



376 N. K.-R. Kevlahan

shock curvature which is directly related to the gradient of shock strength (it does not
involve the flow ahead of the shock), the second term represents baroclinic generation
of vorticity (∇P × ∇ρ) due to misalignment between pressure and density gradients
as the flow passes through the shock, and the last term represents conservation of
angular momentum. The identification of the second term as baroclinic is clear from
the derivation (it involves products of gradients of density and pressure ahead of the
shock), while the third term is the angular momentum created by compression of the
flow in the direction normal to the shock front.

Note that the term µω in (2.18) is not negligible even if the shock is weak; thus
there is vorticity generation across a weak shock if the flow ahead of the shock is
rotational. If µ∂Cr/∂S > 1 then vorticity generation by the curvature term is also not
negligible in weak shocks; this is the case near kinks (shock-shocks). These results
show that one must be careful when considering vorticity amplification across a weak
shock.

It is usually stated that there is no vorticity jump across a weak shock because the
entropy jump is O(µ3) (e.g. Landau & Lifshitz 1987, p. 436). However, (2.18) clearly
shows that the vorticity jump across a weak shock is not zero if the flow ahead of
the shock is rotational or if there are large gradients in shock strength. One would
expect non-uniformities in the flow ahead of the shock to be important if the flow
contains intense local structures such as vortices (this is the case for turbulent flows).

2.2. Straight shock in irrotational flow

We now consider the question of whether there is a jump in vorticity across a
straight shock if the flow ahead of the shock is irrotational and steady. Separating the
rotational and irrotational parts of the flow ahead of the shock, the vorticity jump
becomes

δω =
µ2

1 + µ

∂Cr

∂S
+

1
2
(γ − 1)µ2

1− 1
2
(γ − 1)µ

1

Cr
(AeNS + BeSS ) +

(
µ−

1
2
(γ − 1)µ2

1− 1
2
(γ − 1)µ

1

Cr
A

)
ω,

(2.19)

where the irrotational rates of strains eNS and eSS are defined in terms of the stream
function Ψ by

eNS = 2NxNyΨxy + 1
2
(N2

y −N2
x)(Ψyy −Ψxx), (2.20)

eSS = (N2
y −N2

x)Ψxy −NxNy(Ψyy −Ψxx). (2.21)

If the shock is straight ∂Cr/∂S = 0, and if the flow ahead of the shock is irrotational
ω = 0, then from (2.19) the vorticity jump across a straight shock becomes

δω =
1
2
(γ − 1)µ2

1− 1
2
(γ − 1)µ

1

Cr
(ueNS + veSS ) , (2.22)

which may be non-zero. The vorticity is generated exclusively by baroclinic effects in
this case. Thus we have seen that a straight shock may generate vorticity from an
initially irrotational flow via tangential strains in the velocity field ahead of the shock.

It is important to bear in mind that the irrotational strain field can deform the
shock and thus the shock may not remain straight. However, if the shock is strong
and the flow ahead weak the vorticity production due to shock deformation will
remain negligible. If, on the other hand, the shock is weak curvature will rapidly
become the dominant source of vorticity production across the shock. The main
point of this subsection is that in principle shock curvature and rotational flow ahead
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of the shock are not required to produce vorticity across the shock. This can also
be seen in the deposition of vorticity on density interfaces by straight shocks in
the Richtmyer–Meshkov instability environment (e.g. Samtaney & Zabusky 1994),
although we have used the acoustic approximation to express the vorticity jump
entirely in terms of velocity gradients (which is more useful in the context of the
shock–turbulence interaction).

2.3. The shock–turbulence interaction

The expression for the vorticity jump (2.18) may be put into a form useful for analysing
the shock–turbulence interaction by writing it in terms of the Mach number of the
shock MS and the Mach number of the flow ahead of the shock MU = (u2 + v2)1/2/a0.

MU is the local equivalent of the turbulence Mach number Mt = (M2
U)1/2. In the

following it will be assumed that M2
U � 1 so that the flow ahead of the shock is only

weakly compressible.
If the turbulence is approximately steady the vorticity jump becomes

δω =
µ2

2MS

(
1

1 + µ

∂M2
S

∂S
+

1
2
(γ − 1)

1− 1
2
(γ − 1)µ

∂M2
U

∂S

)
+ µω + O(M4

U), (2.23)

where the following expression for the variation of sound speed in steady flow has
been used:

a

a0

=
(
1− 1

2
(γ − 1)M2

U

)1/2
= 1− 1

4
(γ − 1)M2

U + O(M4
U). (2.24)

When applied to the shock–turbulence interaction the first two terms on the right-
hand side of (2.23) represent vorticity generation by tangential gradients of shock
speed ‘energy’ and local kinetic energy (which is essentially the TKE). The first effect
is a result of shock curvature and the second is a baroclinic generation of vorticity.

In his review article on compressible turbulence Lele (1994) states that from
direct numerical simulations (DNS) of the weak shock–weak turbulence interaction
(M2

t < 0.1(M2
s − 1), (M2

s − 1) < 0.5) “the net result is that the vorticity components in
the plane of the shock increase in proportion to the density ratio across the shock and
the normal component remains unchanged”. This effect corresponds to the term µω
in (2.23) and thus this is the dominant term in the weak-shock–turbulence interaction.
Such a result would be expected from a simple order of magnitude analysis for weak
shocks µ� 1 which gives the vorticity jump as

δω = µω + O(M4
U) + O(µ2). (2.25)

It is likely, however, that in some localized regions shock focusing occurs (see Kevla-
han 1996) and at these places the first two terms in (2.23) will not be negligible, even
for weak shocks. Focusing events are more common for M2

t < 0.1(M2
s − 1) and thus

the first two terms on the right-hand side of (2.23) should be dominant in the strong
turbulence–weak shock and strong turbulence–strong shock interactions.

The ratio R of the kinetic energy term to the shock speed ‘energy’ term is

R = 1
2
(γ − 1)M2

S

(
∂M2

U/∂S

∂M2
S/∂S

)
≈ 1

2
(γ − 1)M2

U � 1, (2.26)

assuming that ∂M2
S/∂S = O(M2

S ) and ∂M2
U/∂S = O(M2

U). For example, if γ = 1.4
and MU = 0.3 then R = 0.018. Note that if the gradients in TKE are strong then
generation of vorticity by tangential gradients of TKE may become more important.
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These results suggest that generation of vorticity across a weak shock in turbulence
is due primarily to shock curvature and the term µω (conservation of angular
momentum). This is corroborated by the DNS of Kida & Orszag (1990) who find the
vorticity production in the entire flow by the TKE term is small, R ≈ 0.128.

Note that in analysing their numerical results Kida & Orszag (1990) derive Trues-
dell’s expression for the vorticity jump across a steady two-dimensional shock in
uniform flow (without reference to Truesdell 1952, Lighthill 1957 or Hayes 1957).
Turbulence is not steady or uniform and the eddy shocklets observed by Kida &
Orszag must also be unsteady. As is shown in the following section, the gradient in
shock strength is proportional to shock curvature only for steady shocks. By using
the Truesdell–Lighthill relation Kida & Orszag miss out the generation of vorticity by
unsteady processes and by non-uniformities in the flow ahead of the shock. Because
they do not include the effect of non-uniformities on the vorticity jump, Kida &
Orszag (1990) cannot separate the contribution to vorticity generation by gradients
in TKE due to shocks from that due to other flow regions.

2.4. Steady bow shock

A curved bow shock forms in front of a blunt object travelling supersonically (see
figure 1). If the bow shock is steady it has a constant shape (which we assume is
given) and thus dx/ dt = C(x, y = 0). From the geometry of the shock this means
that the increment in arclength dS = −C(x, 0) sin θ dt and therefore

dθ =

(
− ∂θ
∂S

)
dS =

∂θ

∂S
C(x, 0) sin θ dt, (2.27)

and thus
dθ

dt
= C(x, 0) sin θ

∂θ

∂S
, (2.28)

where −∂θ/∂S is the curvature of the shock (the shock is convex). Since dθ/ dt =
∂C/∂S this means that the distribution of strength in a steady shock is given by

C(x, 0) sin θ
∂θ

∂S
=
∂C

∂S
=
∂Cr

∂S
+
∂A

∂S
=
∂Cr

∂S
+ eNS + 1

2
ω − B ∂θ

∂S
. (2.29)

Thus the distribution of shock strength in a steady shock is

∂Cr

∂S
= (B + C(x, 0) sin θ)

∂θ

∂S
− eNS − 1

2
ω. (2.30)

Equation (2.30) shows that the variation of strength in a steady bow shock in a flow
at rest is determined uniquely by its shape and its strength at maximum curvature.

Substituting (2.30) into the vorticity jump equation (2.18) we find that the vorticity
jump across a steady shock moving into a non-uniform flow is

δω =
µ2

1 + µ

(
(B + C(x, 0) sin θ)

∂θ

∂S
− eNS

)
+

1
2
(γ − 1)µ2

(1− 1
2
(γ − 1)µ)

1

Cr

(
Du

Dt

)
S

+
µ2 + 2µ

1 + µ
ω.

(2.31)

If the flow ahead of the shock is uniform then the vorticity jump becomes simply

δω =
µ2

1 + µ
(B + C(0) sin θ)

∂θ

∂S
, (2.32)

which is the vorticity jump predicted by the Truesdell equation (if the tangential
velocity in (1.1) is replaced by B + C(0) sin θ).
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Ahead

Behind
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t t + dt

C(x
, y

)d
t

C(x, 0)dt

h + dh

h

dS

Figure 1. The steady bow shock.

Comparing the relation (1.1) derived by Truesdell for steady shocks in a uniform
flow with the relation (1.5) derived by Hayes for unsteady shocks in a uniform flow
gives the mistaken impression that shock strength is uniform in a steady shock, i.e.
∂Cr/∂S = 0. As proved in this section, shock strength must be non-uniform in order to
maintain a constant shock shape. This non-uniformity produces the effective relative
tangential velocity component present in a steady curved shock and contributes to
the vorticity jump.

3. Applications to non-uniform flows ahead of the shock
3.1. Steady strong shock and weak flow ahead

In this section we calculate analytically the vorticity jump across a strong shock
moving into various non-uniform flows.

Consider an initially steady curved shock entering a region of weak non-uniform
flow. We first need to determine the approximations that must be made in order for
the deformation of the shock to be negligible. The equation for the motion of a shock
surface x = g(y, t) is

∂g

∂t
= ũ− ṽ ∂g

∂y
+M(y, t)

[
1 +

(
∂g

∂y

)2
]1/2

= ũ+ ṽ
Ny(y, t)

Nx(y, t)
+
M(y, t)

Nx(y, t)
, (3.1)

where ũ = (ũ, ṽ) is the turbulence velocity ahead of the shock, M(y, t) is the Mach
number of the shock as a function of the y-coordinate and time, and the equation
has been normalized by the velocity of sound a0. The change in the position of the
shock over a short time ∆t may thus be estimated as

∆g = g(y,∆t)− g(y, 0) = ∆t
∂g

∂t
(y, 0) =

(
ũ+ ṽ

Ny

Nx

+M0

)
∆t, (3.2)
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where M0 = M(0, 0) and we have used the fact that M(y, 0)/Nx(y, 0) = M0 since
the shock is assumed to be initially steady. If the time ∆t = O(1/M0) � 1 then the
deformation of the shock due to the turbulence is negligible to first order provided
that ũ, ṽ � 1 (and Ny/Nx = O(1)), i.e. MUM0 = O(1). Thus, using (2.23) and (2.30)
the vorticity jump across the steady shock becomes

δω =
µ2

1 + µ
M0Ny(y, 0)K̃(y, 0) +

1
2
(γ − 1)µ2

(1− 1
2
(γ − 1)µ)

1

M(y, 0)

∂( 1
2
M2

U)

∂S
+ µω̃, (3.3)

where K̃(y, 0) = ∂θ/∂S is the curvature of the undeformed shock and lengths have
been normalized by the initial minimum radius of curvature of the shock. The orders
of the various coefficients in equation (3.3) are

µ2

1 + µ
≈ 4

γ2 − 1
= O(1), (3.4)

1
2
(γ − 1)µ2

1− 1
2
(γ − 1)µ

≈ 2

γ + 1
M2

0 = O(1/M2
U), (3.5)

µ ≈ 5 = O(1). (3.6)

Equation (3.5) shows that overall the second term on the right-hand side of (3.3) is
O(MU) and is not negligible. The vorticity jump across a strong curved shock moving
into weak non-uniform flow is thus given by (3.3) for short times t < 1/M0.

If the shock is initially parabolic, x = −1/2y2, then the shock strength is determined
by

∂M

∂S
= M0Ny(y)K(y) = − M0y

(1 + y2)2
, (3.7)

but ∂M/∂S = dM/dy(1 + y2)−1/2, therefore

dM

dy
= − M0y

(1 + y2)3/2
(3.8)

which may be integrated to give

M(y) =
M0

(1 + y2)1/2
= M0Nx(y), y 6 (M2

0 − 1)1/2, (3.9)

as expected.
Thus, the vorticity jump across a steady parabolic shock moving into non-uniform

flow is given by

δω = − µ2

(1 + µ)

M0y

(1 + y2)2
+

1
2
(γ − 1)µ2

(1− 1
2
(γ − 1)µ)

(1 + y2)1/2

M0

∂( 1
2
M2

U)

∂S
+ µω̃, (3.10)

where µ(y) is defined by

µ(y) =
M2

0 − 1 + y2

1 + 1
2
(γ − 1)M2

0 + y2
. (3.11)

The vorticity jumps for the following flows are shown in figure 2: a sinusoidal shear
flow

ũ(y) = −MU0 cos y, ṽ = 0, ω̃(y) = −MU0 sin y,

∂( 1
2
M2

U)

∂S
= 1

2
M2

U0Nx(y) sin 2y = 1
2
M2

U0(1 + y2)−
1
2 sin 2y;



The vorticity jump across a shock 381

4

2

0

–2

–4

6

4

2

0

–2

– 4

–6
0 2 4 6 8 –4 –2 0 2 4

(a) (b)

(c) (d)
4

2

0

–2

–4

4

2

0

–2

–4
0 2 4 6 0 2 4 6

x x

x y

y

y y

dx

Figure 2. The vorticity jump across a strong steady parabolic shock for two non-uniform flows
ahead of the shock. Shock strength M0 = 5, amplitude of flow ahead of the shock MU0 = 0.3.
(a) Shock shape. (b) Sinusoidal shear flow: —, net; - - -, curvature term; · · ·, baroclinic term;
− · −, angular momentum term. (c) Equally spaced contours of initial vorticity in the vortex array.
(d) Equally spaced contours of vorticity jump in the vortex array. Note that the curvature term
depends only on shock shape and thus has a y-dependence only, all x-dependence in the vorticity
jump comes from the terms ahead of the shock.

a vortex array (perpendicular sinusoidal modes)

ũ(x, y) = −MU0 cos(x) cos(y), ṽ(x, y) = −MU0 sin(x) sin(y),

ω̃(x, y) = −2MU0 cos(x) sin(y),

∂( 1
2
M2

U)

∂S
= 1

2
M2

U0(−Ny(y) sin(2x) cos(2y) +Nx(y) cos(2x) sin(2y))

= 1
2
M2

U0(−y sin(2x) cos(2y) + cos(2x) sin(2y))(1 + y2)−1/2.

Note that the vorticity jump in the sinusoidal shear flow takes the form of a dipole
with peaks offset symmetrically about the vertex of the parabola y = 0; this is the
effect of the curvature term. The vorticity jump changes sign towards the edge of
the parabola where the second term µω due to the non-uniform flow ahead of the
shock becomes dominant. The vorticity jump in the vortex array flow is essentially
homogeneous in x near y = 0, but inhomogeneous in x for larger y where the
terms ahead of the shock in the vorticity equation become significant relative to the
curvature term.
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Figure 3. The vorticity jump across an initially straight unsteady weak shock for various
non-uniform flows ahead of the shock. The flow behind the shock is assumed to be frozen.
Shock strength M0 = 1.2, amplitude of flow ahead of the shock MU0 = 0.3. (a) Sinusoidal shear
flow, jump across the shock at times t = 0.15, 0.25, 0.30 (increasing amplitude). (b) Sinusoidal shear
flow, contours of vorticity jump. (c) Vortex array, jump across the shock at times t = 0.15, 0.20, 0.24
(increasing amplitude). (d) Vortex array, equally spaced contours of vorticity jump.

3.2. Unsteady weak shock and weak flow ahead of the shock

In this section we use the weak shock propagation equations developed in Kevla-
han (1996) to calculate the vorticity behind an unsteady weak shock moving into a
non-uniform flow. The vorticity jump for this situation is given by

δω = 1
4
(γ + 1)

µ2

(1 + µ)

∂µ

∂S
+ µω, (3.12)

where the first term on the right-hand side has been retained because kinks (and asso-
ciated discontinuities in µ(S)) may develop in the weak shock. The shock propagation
equations are solved numerically using the method described in Kevlahan (1996) for
a sinusoidal shear flow, and a vortex array. It is assumed that the vorticity remains
approximately frozen behind the shock (if the flow is inviscid the vorticity is merely
transported along streamlines). The results are shown in figure 3. Note the extremely
strong vorticity associated with kinks in the shock and the fact that the term µω
dominates the vorticity jump except near the kinks. Figure 3 shows how the vorticity
pattern is also deformed outside the kink region.

Samtaney & Zabusky (1994) considered the related two-dimensional problem of
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vorticity deposition by a shock wave on a density inhomogeneity (a straight shock
wave moves through a density discontinuity). In this case the vorticity production
is entirely baroclinic. They analyse the vorticity deposition phase, and use a DNS
to calculate the resulting baroclinic evolution of the flow. The DNS shows that
vorticity deposited on a curved density interface later coalesces to form a mushroom-
shaped coherent structure. One might also expect the intense filamentary vorticity
produced by the kinks in figure 3 to coalesce into coherent structures (e.g. through a
Kelvin–Helmholtz instability).

The study of Samtaney & Zabusky (1994) is complementary to the study presented
here since in their case the baroclinic effects dominate and the shock curvature and
conservation of angular momentum are negligible, while in our case (and in most
shock–turbulence interactions) the opposite is true. It would be interesting to consider
a situation where shock curvature and baroclinic effects are equally important.

4. Conclusions
The vorticity jump across an unsteady shock of arbitrary strength moving into a

non-uniform flow has been investigated in detail. The exact equation for the vorticity
jump has been derived in a form useful for evaluating the different contributions to
vorticity production and evaluated under several different conditions. The vorticity
jump across steady strong shocks in a variety of non-uniform flows has been calculated
analytically, and the vorticity jump across unsteady weak shocks in the same flows
has been calculated numerically.

When a weak shock focuses (develops kinks and shock-shocks) intense vorticity is
generated across the kinks. This vorticity generation mechanism should be important
in the interaction of weak shocks and relatively strong turbulence (M2

t > 0.1(M2
S−1)).

Enhanced vorticity generation at regions of high curvature may account for the
underestimation of vorticity generation by the linear interaction analysis, which does
not include shock evolution (Lee et al. 1993). The increase in the variance of vorticity
behind a curved or focusing shock may also account for a large portion of the
generation of turbulent kinetic energy behind a shock.

By including terms due to the non-uniform flow ahead of the shock it is shown
that the vorticity jump may be non-zero even for weak shocks and straight shocks.
The vorticity jump across a straight shock may be non-zero even if the flow ahead of
the shock is irrotational.

The ratio of vorticity production by shock curvature to vorticity production by
baroclinic effects is found to be O( 1

2
(γ−1)M2

U) which is very small if the flow ahead of

the shock is only weakly compressible, M2
U � 1. If, however, the tangential gradient

along the shock of M2
U is large then baroclinic production is significant; this is the

case in turbulent flows with large gradients of turbulent kinetic energy 1
2
M2

U .
It is important to note here that we have considered the instantaneous vorticity jump

across a shock where the shape of the shock and the distribution of its strength as
well as the flow ahead are specified. We have not considered the subsequent evolution
when separate baroclinic effects drive the flow behind the shock. A complementary
approach, that of calculating the entire flow field for simple compressible flows ahead
of the shock, was used by Azara & Emanuel (1988) who found the two-dimensional or
axisymmetric compressible flow for four simple cases. They calculated the conditions
for zero vorticity behind a curved shock (baroclinic vorticity production exactly cancels
the vorticity produced by the curvature of the shock) and found that irrotational flow
behind a curved shock is impossible if the flow ahead of the shock is rotational.
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Complementary work by Mahesh et al. (1995) using DNS to study the interaction
between a weak shock and compressible upstream turbulence has shown that signif-
icant vorticity can also be generated across a weak shock when the upstream flow
contains acoustic waves. Recent work by Mahesh, Lele & Moin (1997) has focused
on the role of entropy fluctuations in the baroclinic generation of vorticity across
weak shocks. These studies add to the results obtained here showing the importance
of vorticity generation mechanisms in the weak shock–turbulence interaction.

The importance of the contribution to the vorticity jump by non-uniformities in the
flow ahead of the shock has not been recognized in the past. Local non-uniformities
are especially important in the case of turbulence where they take the form of flow
structures such as intense vortices.
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